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ABSTRACT

 

The Geometrically Intrinsic Nonlinear Recursive Filter, or GI Filter, is designed to estimate an arbitrary 
continuous-time Markov diffusion process 

 

X 

 

subject to nonlinear discrete-time observations. The GI 
Filter is fundamentally different from the much-used Extended Kalman Filter (EKF), and its second-
order variants, even in the simplest nonlinear case, in that:

¥ It uses a quadratic function of a vector observation to update the state, instead of the linear func-
tion used by the EKF.

¥ It is based on deeper geometric principles, which make the GI Filter co�rdinate-invariant. This 
implies, for example, that if a linear system were subjected to a nonlinear transformation 

 

f

 

 

 

of the 
state-space and analyzed using the GI Filter, the resulting state estimates and conditional vari-
ances would be the push-forward under 

 

f 

 

of the Kalman Filter estimates for the untransformed 
system - a property which is not shared by the EKF or its second-order variants.

The noise covariance of 

 

X 

 

and the observation covariance themselves induce geometries on state 
space and observation space, respectively, and associated canonical connections. A sequel to this 
paper develops stochastic differential geometry results Ð based on Òintrinsic location parametersÓ, a 
notion derived from the heat flow of harmonic mappings Ð from which we derive the co�rdinate-free 
filter update formula. The present article presents the algorithm with reference to a specific example Ð 
the problem of tracking and intercepting a target, using sensors based on a moving missile. Compu-
tational experiments show that, when the observation function is highly nonlinear, there exist choices 
of the noise parameters at which the GI Filter significantly outperforms the EKF.
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2 Background on Nonlinear Filtering

 

1 Background on Nonlinear Filtering 

 

1.1 Example: A Nonlinear Filtering Problem in Target Tracking

 

DÕSouza, McClure, and Cloutier [8], [9] consider the following tactical air-to-air missile intercept prob-

lem. The state of the target is represented by a position, velocity, and acceleration in space, making 

nine dimensions in all (the authors also model three time constants as state variables). Data consists 

of a sequence of noisy observations of: range, angle from vertical, azimuth, and range-rate, all mea-

sured from a missile with known position, velocity, and acceleration. The goal of filtering in this case is 

to provide a sequence of ÒgoodÓ estimates of the state of the target, based on all measurements so 

far, so as to defeat the targetÕs possible evasive maneuvers and intercept it.

DÕSouza et al [8] point out that, although the state dynamics can be modeled linearly, the observa-

tions are a highly nonlinear function of the state (see Section 2.7.a). Alternatively, if a spherical co�r-

dinate frame, based on the missile, is used, then observations are linear, but the state dynamics are 

highly nonlinear. Moreover the Extended Kalman Filter, and standard second-order filters, will give a 

different set of answers in the Cartesian co�rdinate frame than in the spherical one, because they are 

Ònon-intrinsicÓ, i.e. lacking in absolute geometric meaning.

 

1.2 Drawbacks of Current Approaches

 

1.2.a The Infinite-Dimensional Approach

 

The standard mathematical presentation of the nonlinear filtering problem, as can be seen for exam-

ple in Lipster and Shiryaev [12], and Pardoux [14], involves a measure-valued SDE called the Zakai 

equation (or the Fujisaki-Kallianpur-Kunita formula). This is virtually never used in real-time filtering 

applications because it is impossible to store enough data to update an infinite-dimensional SDE 

(although see Lototsky, Mikulevicius, and Rozovskii [13] for a computational method using a Wiener 

chaos expansion).

 

1.2.b Finite-Dimensional Filters

 

Under certain circumstances, the conditional law can be described using a finite set of parameters. 

Although this topic is outside the scope of this article, an account of recent progress using geometric 

methods can be found in Cohen de Lara [3]. Apart from the Kalman filter, these methods are not 

widely used in practice, since the parameters may be difficult to determine in theory, large in number, 

and difficult to update computationally.

 

1.2.c The Extended Kalman Filter and Second-order Filters.

 

Linearizing the state and observation about the most recent state estimate, and then applying the 

Kalman Filter, gives the Extended Kalman Filter; see Jazwinski [11] and Bar-Shalom and Fortmann 

[1]. The goal here is no longer to describe the full conditional distribution of the state given the obser-

vations, but merely to approximate the conditional expectation and the conditional covariance. As 

mentioned above, the output is co�rdinate-dependent. A careful asymptotic analysis of this and other 

approximation schemes has been given by Picard [15] - see also references therein.
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1.3 Desirable Properties of a Nonlinear Filtering Algorithm

 

1.3.a State Evolves Continuously, Observations are Discrete

 

The state dynamics (for example, the dynamics of an aircraft) should be modeled by a stochastic pro-

cess  in 

 

continuous time

 

, on a differentiable manifold 

 

N

 

. However since digital implemen-

tation of a filtering algorithm is carried out using discrete-time observations, the filter should involve 

observations  collected at 

 

discrete times 

 

 on another manifold 

 

M

 

.

 

1.3.b State Estimates Should Not Be Co�rdinate-Dependent

 

Let  and  be representations of  in two co�rdinate systems, 

where . Likewise let  and  be representations of 

 in two co�rdinate systems. We require that our state estimate of , given 

, be the image under 

 

φ 

 

of our state estimate of , given . 

Notice carefully that this criterion 

 

excludes 

 

use the conditional expectation  

as the state estimate, because it does 

 

not 

 

have this kind of invariance. The replacement of conditional 

expectation by an Òintrinsic location parameterÓ is the main theoretical contribution of this work.

 

1.3.c Must Coincide with the Kalman Filter in the Linear Case

 

When  is a continuous-time Gaussian process, and  is a linear function of  with 

additive Gaussian noise, our filtering algorithm must give the Kalman filter state estimates (which fully 

describe the conditional distribution of the state, given the observations, in such a context.)

 

1.3.d Optimality up to Some Order

 

When the noise covariance of 

 

X

 

, and the observation covariance are taken to be , where 

 is the time interval between observations, we are seeking an algorithm which is optimal up to 

, in a sense to be made precise later.

 

1.3.e Stability

 

The important issue of stability will not be studied here. For results on the stability of the EKF, see 

Bossanne et al [2] and Deza et al [7].

 

2 The Nonlinear Model and its Induced Geometry

 

The geometric ideas in this section may be unfamiliar to filtering theorists, so we shall illustrate them 

with reference to the specific example of Section 1.1.

 

2.1 The State Process

 

Consider a (possibly degenerate) Markov diffusion process  on , written in local 

co�rdinates as

, ,

 

(1)

Xt t 0≥,{ }

Y1 Y2 É, , t1 t2 É< <

Xt
1( )

t 0≥,{ } Xt
2( )

t 0≥,{ } Xt t 0≥,{ }
Xt

2( ) φ Xt
1( )( )= Y1

1( )
Y2

1( )
É, , Y1

2( )
Y2

2( )
É, ,

Y1 Y2 É, , Xtn

2( )

Y1
2( )

É Yn
2( ), ,{ } Xtn

1( )
Y1

1( )
É Yn

1( ), ,{ }
E Xtn

1( )
Y1

1( )
É Yn

1( ), ,

Xt t 0≥,{ } Yn Xtn

O γ2( )
δ γ2≈
O γ3( )

Xt 0 t δ≤ ≤,{ } N R
p≅

dXt
i

b
i

Xt( ) dt σj
i

Xt( ) dWt
j

j 1=

p

∑+= i 1 2 É p, , ,=
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where  is a vector field on , , and W is a Wiener process in 

.We assume for simplicity that the coefficients ,  are  with bounded first derivative. 

2.2 Geometry Induced by the State Process

Such a σ induces a  semi-definite metric  on the cotangent bundle, which we call the diffusion 

variance semi-definite metric, by the formula

. (2)

This semi-definite metric is actually intrinsic: changing co�rdinates for the diffusion will give a differ-

ent matrix , but the same semi-definite metric. The  matrix  defined above 

induces a linear transformation , i.e. from the cotangent space to the tangent 

space at x, namely

. (3)

Let us make a constant-rank assumption, i.e. that there exists a rank r vector bundle , a sub-

bundle of the tangent bundle, such that  for all . Darling [5] pre-

sents a global geometric construction of a canonical sub-Riemannian connection  for , with 

respect to a generalized inverse g, i.e. a vector bundle isomorphism  such that

. (4)

In local co�rdinates,  is expressed by a Riemannian metric tensor , such that if 

, then

. (5)

The local connector  for  can be written as:

, (6)

where  is a 1-form, acting on the tangent vector w. This formula coincides with the 

formula for the Levi-Civita connection in the case where  is non-degenerate; for more details, see 

Darling [5]. Our connection  gives rise to notions of geometry such as geodesics, parallelism, 

covariant differentiation, exponential map, and curvature, as explained in texts such as Darling [4], 

Sakai [16]. We assert:

Axiom A: The appropriate geometry for the state process is the one induced by the diffusion vari-

ance semi-definite metric.

2.3 Intrinsic Description of the Process

The intrinsic version of (1) is to describe X as a diffusion process on the manifold N with generator

b
i

xi∂
∂∑ R

p σ x( ) σj
i

x( )( ) L R
p

TxR
p

;( )∈≡
R

p
b

i σj
i

C
3

C
2

. .〈 | 〉

dx
i
dx

k〈 | 〉 x σ σ x( )⋅( ) ik σj
i

x( ) σj
k

x( )
j 1=

p

∑≡ ≡

σj
i( ) p p× σ σ⋅( ) i j( )

α x( ) :Tx
∗ N TxN→

α x( ) dx
i( ) σ σ⋅( ) i j∂ ∂xj⁄∑≡

E N→
Ex range σ x( )( ) TxN⊆= x N∈

∇° . .〈 | 〉
g:TN T∗ N→

α x( ) g x( )• α x( )• α x( )=

g x( ) grs( )
α i j σ σ⋅( ) i j≡

α ir
grsα

sj

r s,
∑ α i j

=

Γ x( ) L TxR
p

TxR
p⊗ TxR

p
;( )∈ ∇°

2g Γ x( ) u v⊗( )( ) w⋅ D g v( ) g w( )〈 | 〉 u( ) D g w( ) g u( )〈 | 〉 v( ) D g u( ) g v( )〈 | 〉 w( )–+=

g Γ x( ) u v⊗( )( )
. .〈 | 〉

∇°
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(7)

where ∆ is the (possibly degenerate) Laplace-Beltrami operator associated with the diffusion variance, 

and ξ is a vector field, whose expressions in the local co�rdinate system  are as follows:

, . (8)

Note that  has been specified by (6).

2.4 Target Tracking Example

2.4.a State Process

The state x consists of a column vector whose components  are respectively 

the location, velocity, and acceleration of the target in three-dimensional space. We model the accel-

eration as an Ornstein-Uhlenbeck process, with the constraint that acceleration must be perpendicu-

lar to velocity, i.e. , or equivalently that  is a constant. The  components can be 

considered as taking values in the four-dimensional manifold .

Thus within a Cartesian frame, the equations of motion take the nonlinear form:

, (9)

where the square matrix consists of nine  matrices, λ is a positive time constant,  deter-

mines the noise intensity,

, (10)

, (11)

and W is a three-dimensional Wiener process. Note that  is precisely the projection onto the 

orthogonal complement of v in , and  has been chosen so that . (DÕSouza et al 

[9] describe a procedure for estimating λ, but in our simulations we assign to it a predetermined 

value.) The constancy of  implies that

. (12)

2.4.b Geometry Induced by the State Process

The diffusion variance metric (2) is degenerate here; noting that , we find

L ξ 1
2
---∆+≡

x
1

É x
p, ,{ }

∆ σ σ⋅( ) i j
Dij Γ i j

k
Dk

k
∑–{ }

i j,
∑= ξ b

k 1
2
--- σ σ⋅( ) i jΓ i j

k

i j,
∑+{ } Dk

k
∑=

Γ i j
k σ σ⋅( )

i j
∑

p v a, ,( ) R
3

R
3× R

3×∈

v a⋅ 0= v
2

v a,( )
TS

2
R

6⊂

dp
dv
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0 I 0
0 0 I
0 ρ x( ) I– λP v( )–

p
v
a

dt
0
0

γP v( ) dW t( )

+=

3 3× γ λc1≡

ρ x( ) a
2

v
2⁄≡

P v( ) I vv
T

v
2---------– L R

3
R

3
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P v( )
R

3 ρ x( ) d v a⋅( ) 0=

v
2

DP v( ) ζv
1–

v
2--------- ζvv

T
vζv

T
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P
2
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, (13)

where 0 denotes .The rescaled Euclidean metric  on  is a generalized inverse to α 
in the sense of (4), because . In Section 5 of [5] we show in more detail that the correspond-

ing local connector  as in (6) is given by

, . (14)

where a tangent vector ζ to  is broken down into three 3-dimensional components . Note 

. (15)

2.4.c The Intrinsic Vector Field

It follows from (8), (9), and (15) that the formula for the intrinsic vector field ξ is:

. (16)

Differentiate under the assumptions  is constant and , to obtain

, . (17)

In Section 5 of [5], we show that, if we write a symmetric tensor  in  blocks as 

the matrix

,

where , then

α σ σ⋅
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9
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2
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+
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. (18)

2.4.d Curvature of the State Space

The curvature tensor is given by the formula (omitting x):

, (19)

and this may easily be computed from (14), noting that, for example, since  is constant,

.

2.5 Covariance Tensor of a Random Variable in a Riemannian Manifold

We now introduce a local covariance concept, which we use for describing the uncertainty in the state 

estimates. Suppose N is any manifold with a torsion-free connection, , and  is the expo-

nential map from  to N. Suppose S is a random variable with values in N (we assume that S takes 

values in the image of the set on which  is injective), and Σ is a symmetric element of 
.

2.5.a Definition

S will be said to centered at µ with covariance tensor Σ if  satisfies , and 

for any cotangent vectors θ and λ at µ,

. (20)

In more concrete terms, if  is some basis of , and

,

then  is the covariance matrix of the random vector  defined by .

2.6 The Observation Covariance Metric

In our model, the observation  will be the image under the exponential map of a zero-mean ran-

dom variable  in the tangent space at . Thus when ,  is centered at y with 

covariance tensor , a non-degenerate symmetric tensor in . Provided  is 

sufficiently regular, it serves as the metric tensor for a metric  on the cotangent bundle of M, 

called the observation covariance metric, namely

.

We assert:

D
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Axiom B: The appropriate metric for the observation space is the observation covariance metric, 

not the Euclidean metric.

We denote by  the metric tensor on , inverse to , and by  the associated Rieman-

nian metric. The Levi-Civita connection ∇ on M has local connector , computed as follows:

. (21)

2.7 Target Tracking Example, Continued

2.7.a Observation Function

The observables are respectively: range, angle from vertical, azimuth, and range-rate (all measured 

from a missile with known state ) and a fictitious measurement; the latter is a zero-

mean Gaussian random variable representing a fictitious observation of the inner product of velocity 

and acceleration of the target, which according to our model should be zero. Take 

 to be:

(22)

where , and h is the spherical co�rdinate transformation

. (23)

For the sake of brevity, we omit here the calculations of the first and second derivatives of ψ.

2.7.b Observation Covariance Metric

The covariance matrix for the five observed quantities is taken to be of the form

, (24)

where  denotes range, and other quantities are constants. Then 

,

and with ,

, .

Now (21) gives

.
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Let  be the bilinear form with entries 

, .

The components of the connector aregiven by:

, . (25)

2.8 Summary: the Model in Intrinsic Terms

Following the discussion above, we can rephrase the nonlinear filtering model in an abstract way. 

2.8.a Model 

The model consists of:

• A manifold N, called the state space, a canonical sub-Riemannian connection  induced 

by a diffusion variance semi-definite metric  on , and a vector field ξ on N; these 

serve to define the generator  of a diffusion process X on N;

• A Riemannian manifold , called the observation space, and the Levi-Civita connec-

tion ∇  induced by . 

• A  function , called the observation function.

2.8.b Data

Data consist of:

• A point , called the initial state estimate;

• , the covariance tensor of the initial state estimate;

• A sequence of times , and for each  a noisy observation  of  

(in the sense of paragraph 2.6).

2.8.c Goal

The goal is to construct a sequence of state and covariance estimates  for the state process, 

, with the following two properties:

• For a linear system subject to invertible smooth non-linear transformations, our estimates 

should be the transforms of the Kalman filter estimates.

• The construction of  is intrinsic Ð i.e. unaffected by choice of co�rdinates Ð and opti-

mal up to , where γ is a noise intensity parameter.
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5

R
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3 Intrinsic Geometric Quantities Associated with the Model

The following calculations will apply to every time interval , but for notational simplicity we 

shall treat only use a time interval . Let us fix a starting-point , and .

3.1 Basic Notations

3.1.a The Deterministic Flow and Its Derivatives

 is the flow of the vector field ξ, and . We assume non-explosion, so  

is a  diffeomorphism for each t. The flow  induces a two-parameter semigroup:

. (26)

In local coordinates, we compute  as a  matrix, given by

. (27)

3.1.b Push-Forward of the Diffusion Variance Semi-definite Metric

For any vector field ζ on N, and any differentiable map  into a manifold P, the Òpush-for-

wardÓ  takes the value  at ; likewise .

The diffusion variance semi-definite metric  can be considered as an element of . 

Hence the following two quantities are intrinsic:

; (28)

. (29)

3.1.c Second Fundamental Form

Given manifolds N and M, with connections, whose local connectors are  and , respec-

tively, the second fundamental form  of a  mapping  is a vector bundle morphism 

such that . It is expressed in local coordinates by:

(30)

for , . We also need to compute . From a formula in Dar-

ling [5],

,

and together with (30), this leads to the expression:

. (31)
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d φt φs
1–•( ) xs( ) L Txs

N Txt
N;( )∈≡

τs
t

p p×

τs
t

exp Dξ xu( ) ud
s

t
∫{ }=

φ:N P→
φ*ζ dφ ζ x( )⋅ TyP∈ y φ x( ) P∈≡ φ* ζ ζ′⊗( ) φ*ζ φ*ζ′⊗≡

. .〈 | 〉 xt
Txt

N Txt
N⊗

Π t Σ0 φ s–( )
*

. .〈 | 〉 xs
sd

0

t
∫+≡ Σ0 τs

0 σ σ⋅( ) xs( ) τs
0( )

T
sd

0

t
∫+ Tx0

N Tx0
N⊗∈=

Ξt φt( )
*
Π t≡ τs

t σ σ⋅( ) xs( ) τs
t( )

T
sd

0

t
∫ τ0

t Σ0 τ0
t( )

T
+ Txt

N Txt
N⊗∈=

Γ .( ) Γ .( )
∇ dφ C

2 φ:N M→
∇ dφ x( ) L TxN TxN⊗ Tφ x( ) M;( )∈

∇ dφ x( ) v w⊗( ) D
2φ x( ) v w⊗( ) Dφ x( ) Γ x( ) v w⊗( )– Γ y( ) Dφ x( ) v Dφ x( ) w⊗( )+=

v w,( ) TxR
p

TxR
p×∈ y φ x( )≡ ∇ dφδ x0( )

t∂
∂ τ t

δ
D

2φt x0( )( ) v w⊗( ) τ t
δ
D

2ξ xt( ) τ0
t
v τ0

t
w⊗( )=

∇ dφδ x0( ) v w⊗( ) τ t
δ
D

2ξ xt( ) τ0
t
v τ0

t
w⊗( ) td

0

δ
∫ τ0

δΓ x0( ) v w⊗( )– Γ xδ( ) τ0
δ
v τ0

δ
w⊗( )+=
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3.2 Approximate Intrinsic Location Parameter

Assume that X is a diffusion on N with generator , and random initial value , centered 

at  with covariance tensor . A  function  is given. We recall from [5] that there 

exists a vector in the tangent space  which supplies a co�rdinate-independent replacement 

for the notion of expected value of . This vector, denoted , is called the 

approximate intrinsic location parameter (AILP) of  in the tangent space . We here 

omit any discussion of how the AILP is derived from the study of manifold-valued martingales, or its 

relation to harmonic mappings, but merely state the formula

, (32)

using the notations of Section 3.1. In the particular case where ψ is the identity, we obtain 

, the AILP of  in the tangent space , given by

. (33)

3.3 Numerical Evaluation of the Geometric Quantities Above

Suppose we have discretized the interval . We now explain how to evaluate, at consecutive time 

steps , the quantities , where . The ODE  can 

be solved, for example, using the scheme

, (34)

where ξ is short for . Using consecutive pairs  computed from (34), we can discretize 

and solve (27), using the trapezium rule:

, (35)

where , and . Take , and use (34), (35), and the trapezium rule to solve:

. (36)

According to [5], the local formula for  is

, (37)

.

The last integral may be evaluated by:

L ξ 1
2
---∆+≡ X0

x0 Σ0 C
3 ψ:N M→

Tψ xδ( ) M

ψ Xδ( ) Ix0 Σ0, ψ Xδ( )[ ]
ψ Xδ( ) Tψ xδ( ) M

Ix0 Σ0, ψ Xδ( )[ ] 1
2
--- ∇ dψ xδ( ) Ξδ( ) ψ* ∇ dφδ x0( ) Πδ( ) τ t

δ∇ dφt x0( ) Π td( )
0

δ
∫–+{ }=

Ix0 Σ0, Xδ[ ] Xδ Tx0
N

Ix0 Σ0, Xδ[ ] 1
2
--- ∇ dφδ x0( ) Πδ( ) τ t

δ∇ dφt x0( ) Π td( )
0

δ
∫–{ }=

0 δ,[ ]
u t< xt τs

t Ξt mt, , ,{ } mδ Ix0 Σ0, Xδ[ ]≡ dxt dt⁄ ξ xt( )=

xt xu t u–( ) ξ t u–( ) 2

2
--------------------Dξ xu( ) ξ( ) t u–( ) 3

6
-------------------- D

2ξ xu( ) ξ ξ⊗( ) Dξ xu( ) Dξ xu( ) ξ( )+{ }+ + +≈

ξ xu( ) xu xt,( )

τu
t

exp t u–
2

----------- Dξ xu( ) Dξ xt( )+[ ]{ }≈

τ0
0

I= τ0
t τu

t τ0
u

= Ξ0 Σ0=

Ξt
t u–

2
----------- σ σ⋅( ) xt( ) τu

t Ξu
t u–

2
----------- σ σ⋅( ) xu( )+ τu

t( )
T

+≈

mδ Ix0 Σ0, Xδ[ ]≡

mδ
1
2
--- κδ τ0

δΓ x0( ) Σ0( )– Γ xδ( ) Ξδ( )+{ }=

κδ τ t
δ

D
2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅ xt( )( )–[ ] td

0

δ
∫≡
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Finally (30), (32), and (33) show that

, (38)

where . We compute  in a similar way, using (31).

4 The Fundamental Theorems

Throughout this section, X is a diffusion on N with generator , and random initial value 

, centered at  with covariance tensor . We are given a  function , where M is a 

Riemannian manifold of dimension q. Let  be the inverse metric tensor at , 

which can be interpreted as an observation covariance metric as in Section 2.6. Consider a single 

observation  of the form:

,

where  is a mean-zero random vector in , with covariance tensor  when 

, but which is otherwise independent of  and of the Wiener process W.

4.1 Orders of Magnitude of Noise Terms

We shall suppose that, for some small parameter γ, the matrices for  (see (3)) and β (see 

Section 2.6) satisfy

, ; ; (39)

where  is some other semi-definite metric, and  another metric. Also assume that, with respect 

to the metric g appearing in (4), the distribution of  satisfies:

, , , (40)

for arbitrary tensor fields T of type , whose norm is 1. 

4.2 Definition

Let U and Z be integrable random variables in , and Y a random variable in . We shall say that 

Z approximates  up to  if

, (41)

for every  with .

κ t
t u–

2
----------- D

2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅ xt( )( )–[ ] τ u
t κu

t u–
2

----------- D
2ξ xu( ) Ξu( ) Γ xu( ) σ σ⋅ xu( )( )–[ ]+{ }+≈

Ix0 Σ0, ψ Xδ( )[ ] 1
2
--- D

2ψ xδ( ) Ξδ( ) JΓ xδ( ) Ξδ( )– Γ yδ( ) JΞδJ
T( )+{ } Jmδ+=

J Dψ xδ( )≡ ∇ dφδ x0( )

L ξ 1
2
---∆+≡

X0 x0 Σ0 C
3 ψ:N M→

β y( ) TyM TyM⊗∈ y M∈

Y1

Y1 expψ Xδ( ) V1 M∈≡

V1 Tψ Xδ( ) M β y( )
ψ Xδ( ) y= U0

α σ σ⋅≡

α xt( ) γ2α0 xt( )= 0 t δ≤ ≤ β ψ xδ( )( ) γ2β0 ψ xδ( )( )=

α0 β0
U0 expx0

1–
X0( )≡

E U0[ ] O γ4( )= Σ0 Var U0( )≡ O γ2( )= E T U0 U0 U0, ,( )[ ] O γ4( )=

1 3,( )

R
p

R
q

E U Y[ ] O γ4( )

E h Y E Y[ ]–( ) Z U–( )⊗[ ] O γ4( )=

h C
1

R
q

R
p

;( )∈ max supy h y( ) supy Dh y( ),{ } 1=
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4.3 Interpretation of Tensors

To understand formulas such as (45) below, note that  can be interpreted as an 

element of , as in (3). For , the adjoint of  is 

written , and consequently . For the convenience of 

users, (45) is expressed as a matrix product, but it actually represents a vector bundle morphism.

We quote the main result of [6]. 

4.4 Theorem (Intrinsic Conditional Expectation Formula)

Consider the random vector , where , given by

, . (42)

(i) Under the assumptions (39) and (40), the joint distribution of  and  satisfies

; (43)

in terms of the approximate intrinsic location parameters of Section 3.2, where  is given by (29). 

(ii)  is approximated up to  (in the sense of (41)) by 

, (44)

where , and  is analogous to the Kalman gain, namely

, (45)

where , and  satisfies

, (46)

.

(iii)  is approximated up to  by .

(iv) If  denotes the difference between  and (44), and if T is a tensor field of type  on N of 

norm 1, then

. (47)

β y( ) TyM TyM⊗∈
L Ty

∗ M TyM;( ) yδ ψ xδ( )≡ J Dψ xδ( ) L Txδ
N Tyδ

M;( )∈≡
J
T

L Tyδ
∗ M Txδ

∗ N;( )∈ Ξ δJ
T

L Tyδ
∗ M Txδ

N;( )∈

Uδ Zδ⊕ Txδ
N Tψ xδ( ) M⊕∈ yδ ψ xδ( )≡

Uδ expxδ

1–
Xδ( )≡ Zδ expyδ

1–
Y1( )≡

Uδ Zδ

E
Uδ

Zδ

Ix0 Σ0, Xδ[ ]

Ix0 Σ0, ψ Xδ( )[ ]
O γ4( )+=

Ξδ

E Uδ Zδ[ ] O γ4( )

Ix0 Σ0, Xδ[ ] GẐδ ρ Ẑδ Ẑδ⊗( ) E ρ Ẑδ Ẑδ⊗( )[ ]–+ +

Ẑδ Zδ Ix0 Σ0, ψ Xδ( )[ ]–≡ G L Tyδ
M Txδ

N;( )∈

G ΞδJ
T

JΞδJ
T β yδ( )+[ ]

1–
≡

J Dψ xδ( )≡ ρ L Tyδ
M Tyδ

M⊗ Txδ
N;( )∈

ρ z z⊗( ) 1
2
--- I GJ–[ ] ∇ dφδ x0( ) τδ

0
Gz τδ

0
Gz⊗( ) G∇ dψ xδ( ) Gz Gz⊗( )–{ }≡

E ρ Ẑδ Ẑδ⊗( )[ ] ρ GJΞδ( ) O γ4( )+=

Var Uδ Zδ( ) O γ4( ) I GJ–( ) Ξδ

Ûδ Uδ 1 3,( )

E T Ûδ Ûδ Ûδ, ,( )[ ] O γ4( )=
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4.5 Computation of Exponential Barycenters

Let us recall from Emery and Mokobodzki [10] that an exponential barycenter for a random variable 

S on a manifold N with a torsion-free connection Γ is a point  such that the random variable 

 has mean zero. Suppose that are given a point , and moments

, . (48)

We would like to compute from these moments an exponential barycenter for S, or at least a ÒgoodÓ 

approximation. We quote a result of Darling [6]. The norm  is with respect to some reference 

metric for N, which need not be related to the connection. Given the curvature tensor (19), the vector 

field  is denoted .

4.6 Theorem (Exponential Barycenter Formula) 

Suppose that the moments (48) satisfy: , , for a small number γ. Define

. (49)

Then ; in other words, z is an approximate exponential barycenter for S. If T 

is a tensor field of type , and if , where 

, then

. (50)

4.7 Remark on the Validity of Recursion

Note carefully the relationship between the results (47) and (50), and the assumption (40). Assume 

that (40) holds. The conditional law of , given , will be represented by a random variable  on 

N, whose exponential barycenter z is computed according to (49), where µ is computed from (44), 

and Σ is . By (47) and (50), the random variable  in  will satisfy the same 

conditions that  satisfied in (40). Therefore the algorithm can be repeated on the next time inter-

val , at the end of which we receive another observation , etc. 

5 GI Filter Algorithm 

As before, the state process X is a diffusion on N with generator , and random initial value 

 centered at  with covariance tensor . A  function  is given. 

5.1 Discrete-time Observations

At each of the discrete times , we make an observation  of the form:

,

z N∈
expz

1–
S( ) TzN∈ x N∈

µ E expx
1–

S( )[ ] TxN∈≡ Σ Var expx
1–

S( )( ) TxN TxN⊗∈≡

 . 

R
xi∂
∂

xj∂
∂, 

 
xk∂
∂ Rijk

µ O γ( )= Σ O γ2( )=

z expx µ 1
3
--- RijkµiΣjk

i j k, ,
∑–{ }≡

E expz
1–

S( )[ ] O γ4( )=

1 3,( ) E T η µ– η µ– η µ–, ,( )[ ] O γ4( )=

η expx
1–

S( ) TxN∈≡

E T expz
1–

S( ) expz
1–

S( ) expz
1–

S( ), ,( )[ ] O γ4( )=

Xδ Y1 X̂δ

I GJ–( ) Ξδ expz
1–

X̂δ( ) TzN

U0
δ 2δ,[ ] Y2

L ξ 1
2
---∆+≡

X0 µ̂0 Σ̂0 C
3 ψ:N M→

0 t1 t2 É< < < Yn

Yn expψ Xt n( )( ) Vn M∈≡
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where  is a mean-zero random vector in , with covariance tensor  when 

, but which is otherwise independent of X. Define a sequence of sigma-fields

.

At time , we wish to compute an -measurable random variable  with values in N, and an -

measurable random variable , such that, conditional on ,  is approximately 

(i.e. up to ) centered at  with covariance tensor .

For any , suppose that  have been observed, from which we have calculated at 

time  a state estimate  and its associated covariance tensor . The GI Filter update 

formula computes , and  as described in Sections 5.2 - 5.5.

5.2 Precomputation

First we carry out all the computations described in Section 3.3, starting from  and 

.The time interval  is here represented as the time interval , so when we 

refer to , etc., we are really referring to quantities at time . The size of the computation 

depends on the number of sub-intervals into which we divide , which can be as low as 1. Thus 

we obtain numerical expressions for all of the following:

as well as . From these we compute the important coefficients G and ρ, defined in (45) 

and (46), respectively.

5.3 Data Assimilation

All the formulas in this section are based on Theorem 4.4. We pull our new observation  back into 

the tangent space , by defining

, (51)

. (52)

See (58) for a simple formula for . In effect,  is the ÒinnovationÓ, since it is the difference 

between the pulled-back observation  and its expected value, up to . Next compute the 

approximate conditional expectation of , given , namely

. (53)

Note that ρ is non-zero when any kind of non-linearity is present, so µ is a quadratic function of the 

innovation, not a linear one (as occurs in the Extended Kalman Filter, for example). The approximate 

conditional variance of , given , is

Vn Tψ Xt n( )( ) M β y( )
ψ Xt n( )( ) y=

ℑ n
Y σ Y1 É Yn, ,{ }≡

tn ℑ n
Y µ̂n ℑ n

Y

Σ̂n Tµ̂n
N Tµ̂n

N⊗∈ ℑ n
Y

Xtn
O γ4( ) µ̂n Σ̂n

n 1≥ Y1 É Yn 1–, ,
tn 1– µ̂n 1– Σ̂n 1–

µ̂n Σ̂n

x0 µ̂n 1–≡
Σ0 Σ̂n 1–≡ tn 1– tn,[ ] 0 δ,[ ]

xδ Ξδ, tn
0 δ,[ ]

xδ J yδ ∇ dψ xδ( ) Ξδ ∇ dφδ x0( ) Ix0 Σ0, Xδ[ ] Ix0 Σ0, ψ Xδ( )[ ], , , , , , ,

τδ
0 τ0

δ( )
1–

≡

Yn

Tyδ
M

Zδ expyδ

1–
Yn( )≡

Ẑδ Zδ Ix0 Σ0, ψ Xδ( )[ ]–≡

Zδ Ẑδ

Zδ O γ4( )
Uδ expxδ

1–
Xδ( )≡ Yn

µ Ix0 Σ0, Xδ[ ] GẐδ ρ Ẑδ Ẑδ⊗( ) ρ GJΞδ( )–+ + Txδ
N∈≡

Uδ expxδ

1–
Xδ( )≡ Yn
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. (54)

5.4 Update of the State Estimate

Recall that the canonical sub-Riemannian connection  on N induces a curvature tensor, as in (19), 

and the vector field  is denoted .

Define the new state estimate  by the formula of Theorem 4.6 for the conditional exponential 

barycenter of , given , namely

. (55)

See (59) for a simple formula for (55). Finally  is the push-forward of 

 along the geodesic flow; see (60) for a straightforward method to compute .

5.5 Computation of Exponential Maps and Inverse Exponential Maps

Computation of  in (55),  in (51), and , involves solving the 

first-order ordinary differential equations for the geodesic flows on the tangent bundles TN and TM 

respectively, which we describe briefly in Section 5.6. However there are also Òsingle stepÓ versions, 

which most practitioners will prefer to use, and which depend on the following classical formulas of 

local differential geometry, proved for example in Darling [6]:

5.5.a Expansion of the Exponential Map

For ,

. (56)

5.5.b Expansion of the Inverse Exponential Map

The expansion for , taking , is:

. (57)

5.5.c Application

A simple way to approximate (51), avoiding use of the derivative of the connector, is:

. (58)

Since we have to differentiate  in any case to evaluate (19), take

(59)

Σ I GJ–( ) Ξδ Txδ
N Txδ

N⊗∈≡

∇°
R

xi∂
∂

xj∂
∂, 

 
xk∂
∂ Rijk

µ̂n

Xδ Yn

µ̂n expxδ
µ 1

3
--- RijkµiΣjk

i j k, ,
∑–{ } N∈≡

Σ̂n Tµ̂n
N Tµ̂n

N⊗∈
Σ Txδ

N Txδ
N⊗∈ Σ̂n

expxδ
.( ) expyδ

1–
.( ) Σ̂n Tµ̂n

N Tµ̂n
N⊗∈

v TxN R
p≅∈

expxv x v 1
2
---Γ x( ) v v⊗( )–

1
6
--- 2Γ x( ) Γ x( ) v v⊗( ) v⊗( ) DΓ x( ) v( ) v v⊗( )–[ ] O v

4( )+ + +=

expy
1–

z( ) w z y–≡

w 1
2
---Γ y( ) w w⊗( ) 1

6
--- DΓ y( ) w( ) w w⊗( ) Γ y( ) Γ y( ) w w⊗( ) w⊗( )+[ ] O w

4( )+ + +

Zδ Yn yδ–
1
2
---Γ yδ( ) Yn yδ–( ) Yn yδ–( )⊗( )+≈

Γ .( )

v µ 1
3
--- RijkµiΣjk

i j k, ,
∑–≡
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and use (56) to compute (55). For the same choice of v, we may identify  with , and 

so the derivative of  at v can be viewed as a map from  to  which is represented 

locally by a matrix F, where

.

The formula for F comes from differentiating (56) with respect to v. Finally the local formula for  is

. (60)

5.6 Geodesic Flow

This section is for those who seek more accurate calculations than the ones described in Section 5.5. 

The geodesic equation on N can be represented as a first order ODE on the tangent bundle ; in 

local coordinates, a solution is given by the geodesic flow

, , (61)

in , satisfying the system of ODE

. (62)

(See Sakai [16], p. 56.) For example, to compute , the initial conditions will be 

, . Here  will be a geodesic on N. In order to push a tensor 

forward from  to , i.e. to compute , we must compute the 

derivative flow  in  satisfying

, . (63)

We partition  into  matrices; then .

6 Distinctive Features of the GI Filter

6.1 Invariance Under Change of Co�rdinate Systems

All the formulas for the GI Filter come from Theorems 4.4 and 4.6. All the mathematical quantities 

occurring in these two theorems are tensorial, i.e. are definable without using co�rdinates, and hence 

have the same intrinsic meaning for all co�rdinate systems. The only differences between computa-

tions in different co�rdinate systems will arise from numerical errors resulting from discretization, 

which can be made as small as desired.

Tv Txδ
N( ) Txδ

N

expxδ
.( ) Txδ

N Tµ̂n
N

F w( ) w Γ xδ( ) v w⊗( )–≡

Σ̂n

Σ̂n F I GJ–( ) ΞδF
T

Tµ̂n
N Tµ̂n

N⊗∈≡

TN

γ s( )
ζ s( )

πs
γ 0( )
ζ 0( ) 

 
  πs

H γ 0( ) ζ 0( ),( )

πs
V γ 0( ) ζ 0( ),( )

= = 0 s 1≤ ≤

R
p

R
p⊕

γ′
ζ′

h γ ζ,( ) ζ
Γ γ( ) ζ ζ⊗( )–

≡=

γ 1( ) expxδ
v( )=

γ 0( ) xδ= ζ 0( ) v= γ s( ) 0 s 1≤ ≤,{ }
Tγ 0( ) N Tγ 1( ) N π1

H( ) *:Tγ 0( ) N Tγ 1( ) N→
F s( ) 0 s 1≤ ≤,{ } L R

p
R

p⊕ R
p

R
p⊕;( )

F ′ Dh γ ζ,( ) F= F 0( ) I=

F
F11 F12

F21 F22

≡ p p× π1
H( ) * F11 1( )=
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6.2 Consistency with the Kalman Filter Under Nonlinear Transformations

Suppose that  is an Ornstein-Uhlenbeck process satisfying the SDE

, ; (64)

here  and  are -measurable  matrices. Also suppose that

, ,

where ,  and  are -measurable matrices, and the  are 

mutually independent random variables, independent of W. It is well known that the conditional distri-

bution of  given  is Gaussian, with conditional mean  and variance  given recursively by 

the Kalman Filter.

6.2.a Proposition

Suppose  and  are any  diffeomorphisms. When the GI Filter is applied to the 

process , with observations  at times , the state estimator 

of , given , is , with conditional covariance tensor

.

The theorem says, in effect, that when a nonlinear system is a transformed version of a linear system, 

then the GI Filter estimates are similarly transformed versions of the Kalman Filter estimates, as we 

desired in Section 1.3.c.

Proof: Since every step in the GI Filter is co�rdinate-independent, it suffices to prove the theorem 

when φ and θ are both the identity. When  satisfies (64), then (1) holds with  not 

depending on x, and  is of the form , where A stands for  when . The 

connector Γ is zero on , so , and  is zero. 

Likewise since the covariance tensor is constant on observation space, the connector  is zero, and 

since  is linear, we have . We see that  in (37) and 

 in (38). Abbreviating  to , etc., (45) becomes

,

and  in (46). In the constant-metric case, . From (53) and (55),

, ,

which are the Kalman Filter estimates. ×

Xt t 0≥,{ }

dXt An 1– Xtdt σn 1– dWt+= tn 1– t tn≤ ≤

An 1– σn 1– ℑ n 1–
Y

p p×

Yn Jn 1– Xtn
Vn+= n 1 2 É, ,=

Vn Nq 0 Bn 1–,( )∼ Jn 1– Bn 1– ℑ n 1–
Y

Vn{ }

Xtn
ℑ n

Y µ̂n
o Σ̂n

o

φ:R
p

R
p→ θ:R

q
R

q→ C
2

φ Xt( ) t 0≥,{ } θ Y1( ) θ Y2( ) É, , t1 t2 É< <

φ Xtn
( ) θ Y1( ) É θ Yn( ), , φ µ̂n

o( )

Dφ µ̂n
o( ) Σ̂n

o
Dφ µ̂n

o( )( )
T

Xt t 0≥,{ } σ x( )
b x( ) Ax An 1– t tn 1– tn,[ ]∈

N R
p≡ ξ x( ) Ax= D

2ξ x( )

Γ
ψ x( ) Jn 1– x= D

2ψ 0= I
µ̂n 1– Σ̂n 1–,

Xδ[ ] 0=

I
µ̂n 1– Σ̂n 1–,

ψ Xδ( )[ ] 0= Jn 1– Bn 1–, J B,

G ΞδJ
T

JΞδJ
T

B+[ ]
1–

≡

ρ 0= expxv x v+=

µ̂n xδ G Yn yδ–( )+= Σ̂n I GJ–( ) Ξδ=
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6.3 Relationship of the GI Filter with Standard Second-order Filters

Suppose that there is a co�rdinate system on state space in which the local connector , defined 

in (6), is zero, and a co�rdinate system on observation space in which  (the Levi-Civita connector 

for M) is zero. This situation occurs, for example, if  does not depend on x, and  does not 

depend on y. The remaining nonlinearities come from , which need not be zero, and from . 

The formula (45) for G is comparable to standard formulas, but ρ in (46), and the AILPs in (37) and 

(38) will be non-zero. The update formulas (53) and (55) become

,

.

This quadratic formula is unlike the linear formulas found in the continuous-discrete Extended Kal-

man Filter (see [11], Theorem 8.1, p. 278), and the Truncated and Gaussian Second-order Filters 

([11], equation (9.40), p. 345).

6.4 Size of Filtering Errors

We have said nothing about whether the observation function ψ has properties (such as the rank of its 

derivative) sufficient to prevent filtering errors from diverging. See Picard [15] for a rigorous discussion 

of this point for a certain class of filters, under additional assumptions.

7 Software Implementation: Statistical Results

MATLAB codes for the GI filter and for a continuous-discrete Extended Kalman Filter have been 

developed for the tracking problem described in Sections 2.4 and 2.7. Although the GI Filter shows 

reduced bias, this example is not well suited to a statistical comparison, since results depend on many 

parameters, on the control law for the tracker, and on the co�rdinate systems chosen for the EKF. 

Moreover in a nine-dimensional state space, computations are relatively slow for both filters.

Consequently a much simpler example was selected as a context for statistical comparison. Here both 

the state process and the observations are one-dimensional, and the noise variance and observation 

variance do not vary, which forces both the local connectors  and  to be zero. The model 

is:

, , (65)

, ., (66)

where  and . If one were using such a simple model in real life, 

direct calculation of the conditional density would be a natural approach in practice. The GI Filter and 

EKF were programmed merely for the sake of statistical comparison. 

Γ .( )
Γ .( )

σ x( ) β y( )
D

2ξ D
2ψ

µ̂n xδ Ix0 Σ0, Xδ[ ] GẐδ ρ Ẑδ Ẑδ⊗( ) ρ GJΞδ( )–+ + +≡

Ẑδ Yn yδ– Ix0 Σ0, ψ Xδ( )[ ]–≡

Γ .( ) Γ .( )

dXt ξ Xt( ) dt αdWt+= t 0≥

Yn ψ Xn( ) βVn+= n 1 2 É, ,=

ξ x( ) x
3

– 2⁄≡ ψ x( ) x p x
2

+( )⁄≡
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Note that ψ has critical points at , at which any filter is bound to perform badly. We chose 

parameters , , and , which cause the state process, which is a positive recur-

rent diffusion, to visit the critical points fairly often. Since the model is stationary, statistical character-

istics of a filter may be observed by simply running the filter over thousands of cycles. Fortunately all 

the formulas defined in Section 3 can be computed analytically, without recourse to numerical inte-

gration. For example, , and the AILP of  is given by

.

Histograms for the absolute value of the filter error over 10,000 filter cycles are shown. To preserve 

stability of the GI Filter, we placed a ÒcollarÓ over the second order term  in (53) 

so that its magnitude could not exceed that of the first order term. Note that large filtering errors 

occur less frequently for the GIF than for the EKF. This reflects the fact that, when the GI Filter is 

Òthrown offÓ by the nonlinearity of the observation function ψ, it recovers more quickly than the EKF 

does. An example is shown in the following time series of 100 filter cycles, using the same X series. 

p±
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2
t+⁄= Xδ
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It should be emphasized that the parameter values chosen represent an extreme regime at the very 

edge of instability, and that for a large range of parameter values, for example for  and small α 

and β, the GI Filter and the EKF perform about the same. Moreover when the second order term 

 is deleted, the performance advantage of the GI Filter disappears.

8 Conclusion

This project has demonstrated that there is a natural intrinsic generalization of the Kalman Filter to 

the fully nonlinear context, and that it is possible to implement it computationally. Unlike the Extended 

Kalman Filter, the state estimate for the GI Filter is a quadratic, not a linear, function of the observa-

tions. Computational experiments show that, when the observation function is highly nonlinear, there 

exist choices of the noise parameters at which the GI Filter significantly outperforms the EKF.

Acknowledgment: The author thanks Dr. James R. Cloutier of the Wright Laboratory for explaining the tracking 

problem analyzed above, and for valuable advice and encouragement. He also thanks Boris Rosovskii, Etienne 

Pardoux, and Ofer Zeitouni for helpful conversations, and the Statistics Department, University of California at 

Berkeley, for its hospitality during the writing of this article.

p 4>
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